分页: 25/27 第一页 上页 20 21 22 23 24 25 26 27 下页 最后页 [ 显示模式: 摘要 | 列表 ]
Nov 11

1.概述
~~~~~~~~

  GIF(Graphics Interchange Format,图形交换格式)文件是由 CompuServe公司开发的图形文件格式,版权所有,任何商业目的使用均须 CompuServe公司授权。
  GIF图象是基于颜色列表的(存储的数据是该点的颜色对应于颜色列表的索引值),最多只支持8位(256色)。GIF文件内部分成许多存储块,用来存储多幅图象或者是决定图象表现行为的控制块,用以实现动画和交互式应用。GIF文件还通过LZW压缩算法压缩图象数据来减少图象尺寸(关于LZW算法和GIF数据压缩>>...)。

2.GIF文件存储结构
~~~~~~~~~~~~~~~~~~~

  GIF文件内部是按块划分的,包括控制块( Control Block )和数据块(Data Sub-blocks)两种。控制块是控制数据块行为的,根据不同的控制块包含一些不同的控制参数;数据块只包含一些8-bit的字符流,由它前面的控制块来决定它的功能,每个数据块大小从0到255个字节,数据块的第一个字节指出这个数据块大小(字节数),计算数据块的大小时不包括这个字节,所以一个空的数据块有一个字节,那就是数据块的大小0x00。下表是一个数据块的结构:

BYTE76543210BIT
0

块大小

Block Size - 块大小,不包括这个这个字节(不计算块大小自身)
1Data Values - 块数据,8-bit的字符串
2
...
254
255

  一个GIF文件的结构可分为文件头(File Header)、GIF数据流(GIF Data Stream)和文件终结器(Trailer)三个部分。文件头包含GIF文件署名(Signature)和版本号(Version);GIF数据流由控制标识符、图象块(Image Block)和其他的一些扩展块组成;文件终结器只有一个值为0x3B的字符(';')表示文件结束。下表显示了一个GIF文件的组成结构:

GIF署名文件头
版本号
逻辑屏幕标识符GIF数据流
全局颜色列表
...
图象标识符图象块                             
图象局部颜色列表图
                           基于颜色列表的图象数据
...
GIF结尾文件结尾

  下面就具体介绍各个部分:

文件头部分(Header)
~~~~~~~~~~~~~~~~~

GIF署名(Signature)和版本号(Version)
~~~~~~~~~~~~~~~~~~~~~~~~~~~
GIF署名用来确认一个文件是否是GIF格式的文件,这一部分由三个字符组成:"GIF";文件版本号也是由三个字节组成,可以为"87a"或"89a".具体描述见下表:

BYTE76543210BIT
1'G'GIF文件标识
2'I'
3'F'
4'8'GIF文件版本号:87a - 1987年5月
        89a - 1989年7月
5'7'或'9'
6'a'

GIF数据流部分(GIF Data Stream)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

逻辑屏幕标识符(Logical Screen Descriptor)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
这一部分由7个字节组成,定义了GIF图象的大小(Logical Screen Width & Height)、颜色深度(Color Bits)、背景色(Blackground Color Index)以及有无全局颜色列表(Global Color Table)和颜色列表的索引数(Index Count),具体描述见下表:

BYTE76543210BIT
1逻辑屏幕宽度像素数,定义GIF图象的宽度
2
3逻辑屏幕高度像素数,定义GIF图象的高度
4
5mcrspixel具体描述见下...
6背景色背景颜色(在全局颜色列表中的索引,如果没有全局颜色列表,该值没有意义)
7像素宽高比像素宽高比(Pixel Aspect Radio)

m - 全局颜色列表标志(Global Color Table Flag),当置位时表示有全局颜色列表,pixel值有意义.
cr - 颜色深度(Color ResoluTion),cr+1确定图象的颜色深度.
s - 分类标志(Sort Flag),如果置位表示全局颜色列表分类排列.
pixel - 全局颜色列表大小,pixel+1确定颜色列表的索引数(2的pixel+1次方)
.

全局颜色列表(Global Color Table)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
全局颜色列表必须紧跟在逻辑屏幕标识符后面,每个颜色列表索引条目由三个字节组成,按R、G、B的顺序排列。

BYTE76543210BIT
1索引1的红色值
2索引1的绿色值
3索引1的蓝色值
4索引2的红色值
5索引2的绿色值
6索引2的蓝色值
7...                            

图象标识符(Image Descriptor)
~~~~~~~~~~~~~~~~~~~~~~~~~
一个GIF文件内可以包含多幅图象,一幅图象结束之后紧接着下是一幅图象的标识符,图象标识符以0x2C(',')字符开始,定义紧接着它的图象的性质,包括图象相对于逻辑屏幕边界的偏移量、图象大小以及有无局部颜色列表和颜色列表大小,由10个字节组成:

BYTE76543210BIT
100101100图象标识符开始,固定值为','
2X方向偏移量必须限定在逻辑屏幕尺寸范围内
3
4Y方向偏移量
5
6图象宽度
7
8图象高度
9
10misrpixelm - 局部颜色列表标志(Local Color Table Flag)
置位时标识紧接在图象标识符之后有一个局部颜色列表,供紧跟在它之后的一幅图象使用;值否时使用全局颜色列表,忽略pixel值。
i - 交织标志(Interlace Flag),置位时图象数据使用交织方式排列(详细描述...),否则使用顺序排列。
s - 分类标志(Sort Flag),如果置位表示紧跟着的局部颜色列表分类排列.
r - 保留,必须初始化为0.
pixel - 局部颜色列表大小(Size of Local Color Table),pixel+1就为颜色列表的位数

局部颜色列表(Local Color Table)
~~~~~~~~~~~~~~~~~~~~~~~~~~
如果上面的局部颜色列表标志置位的话,则需要在这里(紧跟在图象标识符之后)定义一个局部颜色列表以供紧接着它的图象使用,注意使用前应线保存原来的颜色列表,使用结束之后回复原来保存的全局颜色列表。如果一个GIF文件即没有提供全局颜色列表,也没有提供局部颜色列表,可以自己创建一个颜色列表,或使用系统的颜色列表。局部颜色列表的排列方式和全局颜色列表一样:RGBRGB......

基于颜色列表的图象数据(Table-Based Image Data)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
由两部分组成:LZW编码长度(LZW Minimum Code Size)和图象数据(Image Data)。

BYTE76543210BIT
1LZW编码长度LZW编码初始码表大小的位数,详细描述见LZW编码...
 

 

...
图象数据,由一个或几个数据块(Data Sub-blocks)组成

数据块

...

GIF图象数据使用了LZW压缩算法(详细介绍请看后面的『LZW算法和GIF数据压缩』),大大减小了图象数据的大小。图象数据在压缩前有两种排列格式:连续的和交织的(由图象标识符的交织标志控制)。连续方式按从左到右、从上到下的顺序排列图象的光栅数据;交织图象按下面的方法处理光栅数据:

创建四个通道(pass)保存数据,每个通道提取不同行的数据:
第一通道(Pass 1)提取从第0行开始每隔8行的数据;
第二通道(Pass 2)提取从第4行开始每隔8行的数据;
第三通道(Pass 3)提取从第2行开始每隔4行的数据;
第四通道(Pass 4)提取从第1行开始每隔2行的数据;

下面的例子演示了提取交织图象数据的顺序:

 通道1  通道2  通道3  通道4 
0  --------------------------------------------------------1
1 --------------------------------------------------------4
2  --------------------------------------------------------3
3  --------------------------------------------------------4
4  --------------------------------------------------------2
5  --------------------------------------------------------4
6  --------------------------------------------------------3
7  --------------------------------------------------------4
8  --------------------------------------------------------1
9  --------------------------------------------------------4
10 --------------------------------------------------------3
11 --------------------------------------------------------4
12 --------------------------------------------------------2
13 --------------------------------------------------------4
14 --------------------------------------------------------3
15 --------------------------------------------------------4
16 --------------------------------------------------------1
17 --------------------------------------------------------4
18 --------------------------------------------------------3
19 --------------------------------------------------------4
20 --------------------------------------------------------2

 

图形控制扩展(Graphic Control Extension)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
这一部分是可选的(需要89a版本),可以放在一个图象块(图象标识符)或文本扩展块的前面,用来控制跟在它后面的第一个图象(或文本)的渲染(Render)形式,组成结构如下:

BYTE76543210BIT
1扩展块标识Extension Introducer - 标识这是一个扩展块,固定值0x21
2图形控制扩展标签Graphic Control Label - 标识这是一个图形控制扩展块,固定值0xF9
3块大小Block Size - 不包括块终结器,固定值4
4保留处置方法

i

t

i - 用户输入标志;t - 透明色标志。详细描述见下...
5延迟时间Delay Time - 单位1/100秒,如果值不为1,表示暂停规定的时间后再继续往下处理数据流
6
7透明色索引Transparent Color Index - 透明色索引值
8块终结器Block Terminator - 标识块终结,固定值0

处置方法(Disposal Method):指出处置图形的方法,当值为:
                        0 - 不使用处置方法
                        1 - 不处置图形,把图形从当前位置移去
                        2 - 回复到背景色
                        3 - 回复到先前状态
                      4-7 - 自定义
用户输入标志(Use Input Flag):指出是否期待用户有输入之后才继续进行下去,置位表示期待,值否表示不期待。用户输入可以是按回车键、鼠标点击等,可以和延迟时间一起使用,在设置的延迟时间内用户有输入则马上继续进行,或者没有输入直到延迟时间到达而继续
透明颜色标志(Transparent Color Flag):置位表示使用透明颜色

注释扩展(Comment Extension)
~~~~~~~~~~~~~~~~~~~~~~~~~~~
这一部分是可选的(需要89a版本),可以用来记录图形、版权、描述等任何的非图形和控制的纯文本数据(7-bit ASCII字符),注释扩展并不影响对图象数据流的处理,解码器完全可以忽略它。存放位置可以是数据流的任何地方,最好不要妨碍控制和数据块,推荐放在数据流的开始或结尾。具体组成:

BYTE76543210BIT
1扩展块标识Extension Introducer - 标识这是一个扩展块,固定值0x21
2注释块标签Comment Label - 标识这是一个注释块,固定值0xFE

...
Comment Data - 一个或多个数据块(Data Sub-Blocks)组成

注释块

...
块终结器Block Terminator - 标识注释块结束,固定值0

图形文本扩展(Plain Text Extension)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

这一部分是可选的(需要89a版本),用来绘制一个简单的文本图象,这一部分由用来绘制的纯文本数据(7-bit ASCII字符)和控制绘制的参数等组成。绘制文本借助于一个文本框(Text Grid)来定义边界,在文本框中划分多个单元格,每个字符占用一个单元,绘制时按从左到右、从上到下的顺序依次进行,直到最后一个字符或者占满整个文本框(之后的字符将被忽略,因此定义文本框的大小时应该注意到是否可以容纳整个文本),绘制文本的颜色索引使用全局颜色列表,没有则可以使用一个已经保存的前一个颜色列表。另外,图形文本扩展块也属于图形块(Graphic Rendering Block),可以在它前面定义图形控制扩展对它的表现形式进一步修改。图形文本扩展的组成:

BYTE76543210BIT
1扩展块标识Extension Introducer - 标识这是一个扩展块,固定值0x21
2图形控制扩展标签Plain Text Label - 标识这是一个图形文本扩展块,固定值0x01
3块大小Block Size - 块大小,固定值12
4文本框左边界位置Text Glid Left Posotion - 像素值,文本框离逻辑屏幕的左边界距离
5
6文本框上边界位置Text Glid Top Posotion - 像素值,文本框离逻辑屏幕的上边界距离
7
8文本框高度Text Glid Width -像素值
9
10文本框高度Text Glid Height - 像素值
11
12字符单元格宽度Character Cell Width - 像素值,单个单元格宽度
13字符单元格高度Character Cell Height- 像素值,单个单元格高度
14文本前景色索引Text Foreground Color Index - 前景色在全局颜色列表中的索引
15文本背景色索引Text Blackground Color Index - 背景色在全局颜色列表中的索引
N
...
Plain Text Data - 一个或多个数据块(Data Sub-Blocks)组成,保存要在显示的字符串。

文本数据块

...
N+1块终结Block Terminator - 标识注释块结束,固定值0

推荐:1.由于文本的字体(Font)和尺寸(Size)没有定义,解码器应该根据情况选择最合适的;
2.如果一个字符的值小于0x20或大于0xF7,则这个字符被推荐显示为一个空格(0x20);
3.为了兼容性,最好定义字符单元格的大小为8x8或8x16(宽度x高度)

应用程序扩展(Application Extension)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

这是提供给应用程序自己使用的(需要89a版本),应用程序可以在这里定义自己的标识、信息等,组成:

BYTE76543210BIT
1扩展块标识Extension Introducer - 标识这是一个扩展块,固定值0x21
2图形控制扩展标签Application Extension Label - 标识这是一个应用程序扩展块,固定值0xFF
3块大小Block Size - 块大小,固定值11
4应用程序标识符Application Identifier - 用来鉴别应用程序自身的标识(8个连续ASCII字符)
5
6
7
8
9
10
11
12应用程序鉴别码Application Authentication Code - 应用程序定义的特殊标识码(3个连续ASCII字符)
13
14
N
...
应用程序自定义数据块 - 一个或多个数据块(Data Sub-Blocks)组成,保存应用程序自己定义的数据

应用程序数据

...
N+1块终结器lock Terminator - 标识注释块结束,固定值0

文件结尾部分
~~~~~~~~~~~

文件终结器(Trailer)
~~~~~~~~~~~~~~~~

这一部分只有一个值为0的字节,标识一个GIF文件结束.

BYTE76543210
1

文件终结

GIF Trailer - 标识GIF文件结束,固定值0x3B

2.LZW算法和GIF数据压缩
~~~~~~~~~~~~~~~~~~~~~~~~~~~

  GIF文件的图象数据使用了可变长度编码的LZW压缩算法(Variable-Length_Code LZW Compression),这是从LZW(Lempel Ziv Compression)压缩算法演变过来的,通过压缩原始数据的重复部分来达到减少文件大小的目的。

标准的LZW压缩原理:
~~~~~~~~~~~~~~~~~~
先来解释一下几个基本概念:
  LZW压缩有三个重要的对象:数据流(CharStream)、编码流(CodeStream)和编译表(String Table)。在编码时,数据流是输入对象(图象的光栅数据序列),编码流就是输出对象(经过压缩运算的编码数据);在解码时,编码流则是输入对象,数据流是输出对象;而编译表是在编码和解码时都须要用借助的对象。

字符(Character):最基础的数据元素,在文本文件中就是一个字节,在光栅数据中就是一个像素的颜色在指定的颜色列表中的索引值

字符串(String):由几个连续的字符组成;
前缀(Prefix):也是一个字符串,不过通常用在另一个字符的前面,而且它的长度可以为0;
(Root):单个长度的字符串;
编码(Code):一个数字,按照固定长度(编码长度)从编码流中取出,编译表的映射值;
图案:一个字符串,按不定长度从数据流中读出,映射到编译表条目.

  LZW压缩的原理:提取原始图象数据中的不同图案,基于这些图案创建一个编译表,然后用编译表中的图案索引来替代原始光栅数据中的相应图案,减少原始数据大小。看起来和调色板图象的实现原理差不多,但是应该注意到的是,我们这里的编译表不是事先创建好的,而是根据原始图象数据动态创建的,解码时还要从已编码的数据中还原出原来的编译表(GIF文件中是不携带编译表信息的),为了更好理解编解码原理,我们来看看具体的处理过程:

编码器(Compressor)
~~~~~~~~~~~~~~~~

  编码数据,第一步,初始化一个编译表,假设这个编译表的大小是12位的,也就是最多有4096个单位,另外假设我们有32个不同的字符(也可以认为图象的每个像素最多有32种颜色),表示为a,b,c,d,e...,初始化编译表:第0项为a,第1项为b,第2项为c...一直到第31项,我们把这32项就称为根。
  开始编译,先定义一个前缀对象Current Prefix,记为[.c.],现在它是空的,然后定义一个当前字符串Current String,标记为[.c.]k,[.c.]就为Current Prefix,k就为当前读取字符。现在来读取数据流的第一个字符,假如为p,那么Current String就等于[.c.]p(由于[.c.]为空,实际上值就等于p),现在在编译表中查找有没有Current String的值,由于p就是一个根字符,我们已经初始了32个根索引,当然可以找到,把p设为Current Prefix的值,不做任何事继续读取下一个字符,假设为q,Current String就等于[.c.]q(也就是pq),看看在编译表中有没有该值,当然。没有,这时我们要做下面的事情:将Current String的值(也就是pq)添加到编译表的第32项,把Current Prefix的值(也就是p)在编译表中的索引输出到编码流,修改Current Prefix为当前读取的字符(也就是q)。继续往下读,如果在编译表中可以查找到Current String的值([.c.]k),则把Current String的值([.c.]k)赋予Current Prefix;如果查找不到,则添加Current String的值([.c.]k)到编译表,把Current Prefix的值([.c.])在编译表中所对应的索引输出到编码流,同时修改Current Prefix为k ,这样一直循环下去直到数据流结束。伪代码看起来就像下面这样:

编码器伪代码

Initialize String Table;
[.c.] = Empty;
[.c.]k = First Character in CharStream;
while ([.c.]k != EOF )
{
  if ( [.c.]k is in the StringTable)
  {
    [.c.] = [.c.]k;
  }
  else
  {
    add [.c.]k to the StringTable;
    Output the Index of [.c.] in the StringTable to the CodeStream;
    [.c.] = k;
  }
  [.c.]k = Next Character in CharStream;
}

Output the Index of [.c.] in the StringTable to the CodeStream;

来看一个具体的例子,我们有一个字母表a,b,c,d.有一个输入的字符流abacaba。现在来初始化编译表:#0=a,#1=b,#2=c,#3=d.现在开始读取第一个字符a,[.c.]a=a,可以在在编译表中找到,修改[.c.]=a;不做任何事继续读取第二个字符b,[.c.]b=ab,在编译表中不能找,那么添加[.c.]b到编译表:#4=ab,同时输出[.c.](也就是a)的索引#0到编码流,修改[.c.]=b;读下一个字符a,[.c.]a=ba,在编译表中不能找到:添加编译表#5=ba,输出[.c.]的索引#1到编码流,修改[.c.]=a;读下一个字符c,[.c.]c=ac,在编译表中不能找到:添加编译表#6=ac,输出[.c.]的索引#0到编码流,修改[.c.]=c;读下一个字符a,[.c.]c=ca,在编译表中不能找到:添加编译表#7=ca,输出[.c.]的索引#2到编码流,修改[.c.]=a;读下一个字符b,[.c.]b=ab,编译表的#4=ab,修改[.c.]=ab;读取最后一个字符a,[.c.]a=aba,在编译表中不能找到:添加编译表#8=aba,输出[.c.]的索引#4到编码流,修改[.c.]=a;好了,现在没有数据了,输出[.c.]的值a的索引#0到编码流,这样最后的输出结果就是:#0#1#0#2#4#0.

解码器(Decompressor)
~~~~~~~~~~~~~~~~~~

  好了,现在来看看解码数据。数据的解码,其实就是数据编码的逆向过程,要从已经编译的数据(编码流)中找出编译表,然后对照编译表还原图象的光栅数据。
  首先,还是要初始化编译表。GIF文件的图象数据的第一个字节存储的就是LZW编码的编码大小(一般等于图象的位数),根据编码大小,初始化编译表的根条目(从0到2的编码大小次方),然后定义一个当前编码Current Code,记作[code],定义一个Old Code,记作[old]。读取第一个编码到[code],这是一个根编码,在编译表中可以找到,把该编码所对应的字符输出到数据流,[old]=[code];读取下一个编码到[code],这就有两种情况:在编译表中有或没有该编码,我们先来看第一种情况:先输出当前编码[code]所对应的字符串到数据流,然后把[old]所对应的字符(串)当成前缀prefix [...],当前编码[code]所对应的字符串的第一个字符当成k,组合起来当前字符串Current String就为[...]k,把[...]k添加到编译表,修改[old]=[code],读下一个编码;我们来看看在编译表中找不到该编码的情况,回想一下编码情况:如果数据流中有一个p[...]p[...]pq这样的字符串,p[...]在编译表中而p[...]p不在,编译器将输出p[...]的索引而添加p[...]p到编译表,下一个字符串p[...]p就可以在编译表中找到了,而p[...]pq不在编译表中,同样将输出p[...]p的索引值而添加p[...]pq到编译表,这样看来,解码器总比编码器慢一步』,当我们遇到p[...]p所对应的索引时,我们不知到该索引对应的字符串(在解码器的编译表中还没有该索引,事实上,这个索引将在下一步添加),这时需要用猜测法:现在假设上面的p[...]所对应的索引值是#58,那么上面的字符串经过编译之后是#58#59,我们在解码器中读到#59时,编译表的最大索引只有#58,#59所对应的字符串就等于#58所对应的字符串(也就是p[...])加上这个字符串的第一个字符(也就是p),也就是p[...]p。事实上,这种猜测法是很准确(有点不好理解,仔细想一想吧)。上面的解码过程用伪代码表示就像下面这样:

解码器伪代码

Initialize String Table;
[code] = First Code in the CodeStream;
Output the String for [code] to the CharStream;

[old] = [code];
[code] = Next Code in the CodeStream;
while ([code] != EOF )
{
  if ( [code] is in the StringTable)
  {
    Output the String for [code] to the CharStream;
// 输出[code]所对应的字符串
    [...] = translation for [old]; // [old]所对应的字符串
    k = first character of translation for [code]; // [code]所对应的字符串的第一个字符
    add [...]k to the StringTable;
    [old] = [code];

  }
  else
  {
    [...] = translation for [old];
    k = first character of [...];
    Output [...]k to CharStream;
    add [...]k to the StringTable;
    [old] = [code];

  }
  [code] = Next Code in the CodeStream;
}

GIF数据压缩
~~~~~~~~~~~

下面是GIF文件的图象数据结构:

BYTE76543210BIT
1

编码长度

LZW Code Size - LZW压缩的编码长度,也就是要压缩的数据的位数
...数据块
块大小数据块,如果需要可重复多次
编码数据
...数据块
块终结器一个图象的数据编码结束,固定值0

把光栅数据序列(数据流)压缩成GIF文件的图象数据(字符流)可以按下面的步骤进行:
1.定义编码长度
GIF图象数据的第一个字节就是编码长度(Code Size),这个值是指要表现一个像素所需要的最小位数,通常就等于图象的色深;
2.压缩数据
通过LZW压缩算法将图象的光栅数据流压缩成GIF的编码数据流。这里使用的LZW压缩算法是从标准的LZW压缩算法演变过来的,它们之间有如下的差别:
  [1]GIF文件定义了一个编码大小(Clear Code),这个值等于2的『编码长度』次方,在从新开始一个编译表(编译表溢出)时均须输出该值,解码器遇到该值时意味着要从新初始化一个编译表;
  [2]在一个图象的编码数据结束之前(也就是在块终结器的前面),需要输出一个Clear Code+1的值,解码器在遇到该值时就意味着GIF文件的一个图象数据流的结束;
  [3]第一个可用到的编译表索引值是Clear Code+2(从0到Clear Code-1是根索引,再上去两个不可使用,新的索引从Clare Code+2开始添加);
  [4]GIF输出的编码流是不定长的,每个编码的大小从Code Size + 1位到12位
编码的最大值就是4095(编译表需要定义的索引数就是4096),当编码所须的位数超过当前的位数时就把当前位数加1,这就需要在编码或解码时注意到编码长度的改变。
3.编译成字节序列
因为GIF输出的编码流是不定长的,这就需要把它们编译成固定的8-bit长度的字符流,编译顺序是从右往左。下面是一个具体例子:编译5位长度编码到8位字符

0bbbaaaaa
1dcccccbb
2eeeedddd
3ggfffffe
4hhhhhggg
...
N

 
4.打包
  前面讲过,一个GIF的数据块的大小从0到255个字节,第一个字节是这个数据块的大小(字节数),这就需要将编译编后的码数据打包成一个或几个大小不大于255个字节的数据包。然后写入图象数据块中。

 

Nov 10
-------------------------------------------   好东西不敢独享-------------------------------------------------
Keil C51开发系统基本知识
1. 第一节 系统概述
Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。用过汇编语言后再使用C来开发,体会更加深刻。
Keil C51软件提供丰富的库函数和功能强大的集成开发调试工具,全Windows界面。另外重要的一点,只要看一下编译后生成的汇编代码,就能体会到Keil C51生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。在开发大型软件时更能体现高级语言的优势。
下面详细介绍Keil C51开发系统各部分功能和使用。
2. 第二节 Keil C51单片机软件开发系统的整体结构
C51工具包的整体结构,如图(1)所示,其中uVision与Ishell分别是C51 for Windows和for Dos的集成开发环境(IDE),可以完成编辑、编译、连接、调试、仿真等整个开发流程。开发人员可用IDE本身或其它编辑器编辑C或汇编源文件。然后分别由C51及A51编译器编译生成目标文件(.OBJ)。目标文件可由LIB51创建生成库文件,也可以与库文件一起经L51连接定位生成绝对目标文件(.ABS)。ABS文件由OH51转换成标准的Hex文件,以供调试器dScope51或tScope51使用进行源代码级调试,也可由仿真器使用直接对目标板进行调试,也可以直接写入程序存贮器如EPROM中。
3. 第三节 存储模式
存储模式决定了没有明确指定存储类型的变量,函数参数等的缺省存储区域,共三种:
1. 1. Small模式
所有缺省变量参数均装入内部RAM,优点是访问速度快,缺点是空间有限,只适用于小程序。
2. 2. Compact模式
所有缺省变量均位于外部RAM区的一页(256Bytes),具体哪一页可由P2口指定,在STARTUP.A51文件中说明,也可用pdata指定,优点是空间较Small为宽裕速度较Small慢,较large要快,是一种中间状态。
3. 3. large模式
所有缺省变量可放在多达64KB的外部RAM区,优点是空间大,可存变量多,缺点是速度较慢。
提示:存储模式在C51编译器选项中选择。
4. 第四节 存储类型声明
变量或参数的存储类型可由存储模式指定缺省类型,也可由关键字直接声明指定。各类型分别用:code,data,idata,xdata,pdata说明,例:
data uar1
char code array[ ]=“hello!”;
unsigned char xdata arr[10][4][4];
5. 第五节 变量或数据类型
C51提供以下几种扩展数据类型:
bit 位变量值为0或1
sbit 从字节中定义的位变量 0或1
sfr sfr字节地址 0~255
sfr16 sfr字地址 0~65535
其余数据类型如:char,enum,short,int,long,float等与ANSI C相同。
6. 第六节 位变量与声明
1. 1. bit型变量
bit型变量可用变量类型,函数声明、函数返回值等,存贮于内部RAM20H~2FH。
注意:
(1) 用#pragma disable说明函数和用“usign”指定的函数,不能返回bit值。
(2) 一个bit变量不能声明为指针,如bit *ptr;是错误的
(3) 不能有bit数组如:bit arr[5];错误。
2. 2. 可位寻址区说明20H-2FH
可作如下定义:
int bdata i;
char bdata arr[3],
然后:
sbit bito=in0;sbit bit15=I^15;
sbit arr07=arr[0]^7;sbit arr15=arr[i]^7;
7. 第七节 Keil C51指针
C51支持一般指针(Generic Pointer)和存储器指针(Memory_Specific Pointer).
1. 1. 一般指针
一般指针的声明和使用均与标准C相同,不过同时还可以说明指针的存储类型,例如:
long * state;为一个指向long型整数的指针,而state本身则依存储模式存放。
char * xdata ptr;ptr为一个指向char数据的指针,而ptr本身放于外部RAM区,以上的long,char等指针指向的数据可存放于任何存储器中。
一般指针本身用3个字节存放,分别为存储器类型,高位偏移,低位偏移量。
2. 2. 存储器指针
基于存储器的指针说明时即指定了存贮类型,例如:
char data * str;str指向data区中char型数据
int xdata * pow; pow指向外部RAM的int型整数。
这种指针存放时,只需一个字节或2个字节就够了,因为只需存放偏移量。
3. 3. 指针转换
即指针在上两种类型之间转化:
l 当基于存储器的指针作为一个实参传递给需要一般指针的函数时,指针自动转化。
l 如果不说明外部函数原形,基于存储器的指针自动转化为一般指针,导致错误,因而请用“#include”说明所有函数原形。
l 可以强行改变指针类型。
8. 第八节 Keil C51函数
C51函数声明对ANSI C作了扩展,具体包括:
1. 1. 中断函数声明:
中断声明方法如下:
void serial_ISR () interrupt 4 [using 1]
{
/* ISR */
}
为提高代码的容错能力,在没用到的中断入口处生成iret语句,定义没用到的中断。
/* define not used interrupt, so generate "IRET" in their entrance */
void extern0_ISR() interrupt 0{} /* not used */
void timer0_ISR () interrupt 1{} /* not used */
void extern1_ISR() interrupt 2{} /* not used */
void timer1_ISR () interrupt 3{} /* not used */
void serial_ISR () interrupt 4{} /* not used */
2. 2. 通用存储工作区
3. 3. 选通用存储工作区由using x声明,见上例。
4. 4. 指定存储模式
由small compact 及large说明,例如:
void fun1(void) small { }
提示:small说明的函数内部变量全部使用内部RAM。关键的经常性的耗时的地方可以这样声明,以提高运行速度。
5. 5. #pragma disable
在函数前声明,只对一个函数有效。该函数调用过程中将不可被中断。
6. 6. 递归或可重入函数指定
在主程序和中断中都可调用的函数,容易产生问题。因为51和PC不同,PC使用堆栈传递参数,且静态变量以外的内部变量都在堆栈中;而51一般使用寄存器传递参数,内部变量一般在RAM中,函数重入时会破坏上次调用的数据。可以用以下两种方法解决函数重入:
a、在相应的函数前使用前述“#pragma disable”声明,即只允许主程序或中断之一调用该函数;
b、将该函数说明为可重入的。如下:
void func(param...) reentrant;
KeilC51编译后将生成一个可重入变量堆栈,然后就可以模拟通过堆栈传递变量的方法。
由于一般可重入函数由主程序和中断调用,所以通常中断使用与主程序不同的R寄存器组。
另外,对可重入函数,在相应的函数前面加上开关“#pragma noaregs”,以禁止编译器使用绝对寄存器寻址,可生成不依赖于寄存器组的代码。
7. 7. 指定PL/M-51函数
由alien指定。
4. 第四章 Keil C51高级编程
本章讨论以下内容:
l 绝对地址访问
l C与汇编的接口
l C51软件包中的通用文件
l 段名转换与程序优化
1. 第一节 绝对地址访问
C51提供了三种访问绝对地址的方法:
1. 1. 绝对宏:
在程序中,用“#include<absacc.h>”即可使用其中定义的宏来访问绝对地址,包括:
CBYTE、XBYTE、PWORD、DBYTE、CWORD、XWORD、PBYTE、DWORD
具体使用可看一看absacc.h便知
例如:
rval=CBYTE[0x0002];指向程序存贮器的0002h地址
rval=XWORD [0x0002];指向外RAM的0004h地址
2. 2. _at_关键字
直接在数据定义后加上_at_ const即可,但是注意:
(1)绝对变量不能被初使化;
(2)bit型函数及变量不能用_at_指定。
例如:
idata struct link list _at_ 0x40;指定list结构从40h开始。
xdata char text[25b] _at_0xE000;指定text数组从0E000H开始
提示:如果外部绝对变量是I/O端口等可自行变化数据,需要使用volatile关键字进行描述,请参考absacc.h。
3. 3. 连接定位控制
此法是利用连接控制指令code xdata pdata \data bdata对“段”地址进行,如要指定某具体变量地址,则很有局限性,不作详细讨论。
2. 第二节 Keil C51与汇编的接口
1. 1. 模块内接口
方法是用#pragma语句具体结构是:
#pragma asm
汇编行
#pragma endasm
这种方法实质是通过asm与ndasm告诉C51编译器中间行不用编译为汇编行,因而在编译控制指令中有SRC以控制将这些不用编译的行存入其中。
2. 2. 模块间接口
C模块与汇编模块的接口较简单,分别用C51与A51对源文件进行编译,然后用L51将obj文件连接即可,关键问题在于C函数与汇编函数之间的参数传递问题,C51中有两种参数传递方法。
(1) 通过寄存器传递函数参数
最多只能有3个参数通过寄存器传递,规律如下表:

参数数目 char int long,float 一般指针
123 R7R5R3 R6 & R7R4 & R5R2 & R3 R4~R7R4~R7 R1~R3R1~R3R1~R3

(2) 通过固定存储区传递(fixed memory)
这种方法将bit型参数传给一个存储段中:
  ?function_name?BIT
将其它类型参数均传给下面的段:?function_name?BYTE,且按照预选顺序存放。
至于这个固定存储区本身在何处,则由存储模式默认。
(3) 函数的返回值
函数返回值一律放于寄存器中,有如下规律:

return type Registev 说明
bit 标志位 由具体标志位返回
char/unsigned char 1_byte指针 R7 单字节由R7返回
int/unsigned int 2_byte指针 R6 & R7 双字节由R6和R7返回,MSB在R6
long&unsigned long  R4~R7 MSB在R4, LSB在R7
float R4~R7 32Bit IEEE格式
一般指针 R1~R3 存储类型在R3 高位R2 低R1
(4) SRC控制
该控制指令将C文件编译生成汇编文件(.SRC),该汇编文件可改名后,生成汇编.ASM文件,再用A51进行编译。
3. 第三节 Keil C51软件包中的通用文件
在C51\LiB目录下有几个C源文件,这几个C源文件有非常重要的作用,对它们稍事修改,就可以用在自己的专用系统中。
1. 1. 动态内存分配
init_mem.C:此文件是初始化动态内存区的程序源代码。它可以指定动态内存的位置及大小,只有使用了init_mem( )才可以调回其它函数,诸如malloc calloc,realloc等。
calloc.c:此文件是给数组分配内存的源代码,它可以指定单位数据类型及该单元数目。
malloc.c:此文件是malloc的源代码,分配一段固定大小的内存。
realloc.c:此文件是realloc.c源代码,其功能是调整当前分配动态内存的大小。
2. 2. C51启动文件STARTUP.A51
启动文件STARTUP.A51中包含目标板启动代码,可在每个project中加入这个文件,只要复位,则该文件立即执行,其功能包括:
l 定义内部RAM大小、外部RAM大小、可重入堆栈位置
l 清除内部、外部或者以此页为单元的外部存储器
l 按存储模式初使化重入堆栈及堆栈指针
l 初始化8051硬件堆栈指针
l 向main( )函数交权
开发人员可修改以下数据从而对系统初始化
常数名  意义
IDATALEN 待清内部RAM长度
XDATA START 指定待清外部RAM起始地址
XDATALEN 待清外部RAM长度
IBPSTACK 是否小模式重入堆栈指针需初始化标志,1为需要。缺省为0
IBPSTACKTOP 指定小模式重入堆栈顶部地址
XBPSTACK 是否大模式重入堆栈指针需初始化标志,缺省为0
XBPSTACKTOP 指定大模式重入堆栈顶部地址
PBPSTACK 是否Compact重入堆栈指针,需初始化标志,缺省为0
PBPSTACKTOP 指定Compact模式重入堆栈顶部地址
PPAGEENABLE P2初始化允许开关
PPAGE  指定P2值
PDATASTART 待清外部RAM页首址
PDATALEN 待清外部RAM页长度
提示:如果要初始化P2作为紧凑模式高端地址,必须:PPAGEENAGLE=1,PPAGE为P2值,例如指定某页1000H-10FFH,则PPAGE=10H,而且连接时必须如下:
L51<input modules> PDATA(1080H),其中1080H是1000H-10FFH中的任一个值。
以下是STARTUP.A51代码片断,红色是经常可能需要修改的地方:
;------------------------------------------------------------------------------
; This file is part of the C51 Compiler package
; Copyright KEIL ELEKTRONIK GmbH 1990
;------------------------------------------------------------------------------
; STARTUP.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 STARTUP.A51
;
; To link the modified STARTUP.OBJ file to your application use the following
; L51 invocation:
;
; L51 <your object file list>, STARTUP.OBJ <controls>
;
;------------------------------------------------------------------------------
;
; User-defined Power-On Initialization of Memory
;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
;  ; the absolute start-address of IDATA memory is always 0
IDATALEN EQU 80H ; the length of IDATA memory in bytes.
;
XDATASTART EQU 0H ; the absolute start-address of XDATA memory
XDATALEN EQU 0H ; the length of XDATA memory in bytes.
;
PDATASTART EQU 0H ; the absolute start-address of PDATA memory
PDATALEN EQU 0H ; the length of PDATA memory in bytes.
;
; Notes: The IDATA space overlaps physically the DATA and BIT areas of the
; 8051 CPU. At minimum the memory space occupied from the C51
; run-time routines must be set to zero.
;------------------------------------------------------------------------------
;
; Reentrant Stack Initilization
;
; The following EQU statements define the stack pointer for reentrant
; functions and initialized it:
;
; Stack Space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the LARGE model.
XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
XBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.
;
;------------------------------------------------------------------------------
;
; Page Definition for Using the Compact Model with 64 KByte xdata RAM
;
; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.
;
PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
PPAGE  EQU 0 ; define PPAGE number.
;
;------------------------------------------------------------------------------
3. 3. 标准输入输出文件
putchar.c
putchar.c是一个低级字符输出子程,开发人员可修改后应用到自己的硬件系统上,例如向CLD或LEN输出字符。
缺省:putchar.c是向串口输出一个字符XON&line;XOFF是流控标志,换行符“\*n”自动转化为回车/换行“\r\n”。
getkey.c
getkey函数是一个低级字符输入子程,该程序可用到自己硬件系统,如矩阵键盘输入中,缺省时通过串口输入字符。
4. 4. 其它文件
还包括对Watch-Dog有独特功能的INIT.A51函数以及对8×C751适用的函数,可参考源代码。
4. 第四节 段名协定与程序优化
1. 1. 段名协定(Segment Naming Conventions)
C51编译器生成的目标文件存放于许多段中,这些段是代码空间或数据空间的一些单元,一个段可以是可重定位的,也可以是绝对段,每一个可重定位的段都有一个类型和名字,C51段名有以下规定:
每个段名包括前缀与模块名两部分,前缀表示存储类型,模块名则是被编译的模块的名字,例如:
?CO?main1 :表示main1模块中的代码段中的常数部分
?PR?function1?module 表module模块中函数function1的可执行段,具体规定参阅手册。
2. 2. 程序优化
C51编译器是一个具有优化功能的编译器,它共提供六级优化功能。确保生成目标代码的最高效率(代码最少,运行速度最快)。具体六级优化的内容可参考帮助。
在C51中提供以下编译控制指令控制代码优化:
OPTIMIZE(SJXE):尽量采用子程序,使程序代码减少。
NOAREGS:不使用绝对寄存器访问,程序代码与寄存器段独立。
NOREGPARMS:参数传递总是在局部数据段实现,程序代码与低版本C51兼容。
OPTIMIZE(SIZE)AK OPTIMIZE(speed)提供6级优化功能,缺省为: OPTIMIZE(6,SPEED)。
5. 第五章 Keil C51库函数参考
C51强大功能及其高效率的重要体现之一在于其丰富的可直接调用的库函数,多使用库函数使程序代码简单,结构清晰,易于调试和维护,下面介绍C51的库函数系统。
1. 第一节 本征库函数(intrinsic routines)和非本征证库函数
C51提供的本征函数是指编译时直接将固定的代码插入当前行,而不是用ACALL和LCALL语句来实现,这样就大大提供了函数访问的效率,而非本征函数则必须由ACALL及LCALL调用。
C51的本征库函数只有9个,数目虽少,但都非常有用,列如下:
_crol_,_cror_:将char型变量循环向左(右)移动指定位数后返回
_iror_,_irol_:将int型变量循环向左(右)移动指定位数后返回
_lrol_,_lror_:将long型变量循环向左(右)移动指定位数后返回
_nop_: 相当于插入NOP
_testbit_: 相当于JBC bitvar测试该位变量并跳转同时清除。
_chkfloat_: 测试并返回源点数状态。
使用时,必须包含#inclucle <intrins.h>一行。
如不说明,下面谈到的库函数均指非本征库函数。



图(1) C51工具包整体结构图


3. 第三节 Keil C51工具包的安装
1. 1. C51 for Dos
在Windows下直接运行软件包中DOS\C51DOS.exe然后选择安装目录即可。完毕后欲使系统正常工作须进行以下操作(设C:\C51为安装目录):
修改Autoexec.bat,加入
path=C:\C51\Bin
Set C51LIB=C:\C51\LIB
Set C51INC=C:\C51\INC
然后运行Autoexec.bat
2. 2. C51 for Windows的安装及注意事项:
在Windows下运行软件包中WIN\Setup.exe,最好选择安装目录与C51 for Dos相同,这样设置最简单(设安装于C:\C51目录下)。然后将软件包中crack目录中的文件拷入C:\C51\Bin目录下。
4. 第四节 Keil C51工具包各部分功能及使用简介
1. 1. C51与A51
1. (1) C51
C51是C语言编译器,其使用方法为:
C51 sourcefile[编译控制指令]
或者
C51 @ commandfile
其中sourcefile为C源文件(.C)。大量的编译控制指令完成C51编译器的全部功能。包控C51输出文件C.LST,.OBJ,.I和.SRC文件的控制。源文件(.C)的控制等,详见第五部分的具体介绍。
而Commandfile为一个连接控制文件其内容包括:.C源文件及各编译控制指令,它没有固定的名字,开发人员可根据自己的习惯指定,它适于用控制指令较多的场合。
2. (2) A51
A51是汇编语言编译器,使用方法为:
A51 sourcefile[编译控制指令]
或A51 @ commandfile
其中sourcefile为汇编源文件(.asm或.a51),而编译控制指令的使用与其它汇编如ASM语言类似,可参考其他汇编语言材料。
Commandfile同C51中的Commandfile类似,它使A51使用和修改方便。
2. 2. L51和BL51
1. (1) L51
L51是Keil C51软件包提供的连接/定位器,其功能是将编译生成的OBJ文件与库文件连接定位生成绝对目标文件(.ABS),其使用方法为:
L51 目标文件列表[库文件列表] [to outputfile] [连接控制指令]
或 L51 @Commandfile
源程序的多个模块分别经C51与A51编译后生成多个OBJ文件,连接时,这些文件全列于目标文件列表中,作为输入文件,如果还需与库文件(.LiB)相连接,则库文件也必须列在其后。outputfile为输文件名,缺少时为第一模块名,后缀为.ABS。连接控制指令提供了连接定位时的所有控制功能。Commandfile为连接控制文件,其具体内容是包括了目标文件列表,库文件列表及输出文件、连接控制命令,以取代第一种繁琐的格式,由于目标模块库文件大多不止1个,因而第2种方法较多见,这个文件名字也可由使用者随意指定。
2. (2) Bl51
BL51也是C51软件包的连接/定位器,其具有L51的所有功能,此外它还具有以下3点特别之处:
a. 可以连接定位大于64kBytes的程序。
b. 具有代码域及域切换功能(CodeBanking & Bank Switching)
c. 可用于RTX51操作系统
RTX51是一个实时多任务操作系统,它改变了传统的编程模式,甚至不必用main( )函数,单片机系统软件向RTOS发展是一种趋势,这种趋势对于186和386及68K系列CPU更为明显和必须,对8051因CPU较为简单,程序结构等都不太复杂,RTX51作用显得不太突出,其专业版软件PK51软件包甚至不包括RTX51Full,而只有一个RTX51TINY版本的RTOS。RTX51 TINY适用于无外部RAM的单片机系统,因而可用面很窄,在本文中不作介绍。Bank switching技术因使用很少也不作介绍。
3. 3. DScope51,Tscope51及Monitor51
1. (1) dScope51
dScope51是一个源级调试器和模拟器,它可以调试由C51编译器、A51汇编器、PL/M-51编译器及ASM-51汇编器产生的程序。它不需目标板(for windows也可通过mon51接目标板),只能进行软件模拟,但其功能强大,可模拟CPU及其外围器件,如内部串口,外部I/O及定时器等,能对嵌入式软件功能进行有效测试。
其使用方法为:
DS51[debugfile][INIT(initfile)]
其中debugfile是一个Hex格式的8051文件,即待调试的文件其为可选的,可在进入dScope51后用load命令装入。
Initfile为一个初使化文件,它在启动dScope51后,在debugfile装入前装入,装有一些dScope的初使化参数及常用调试函数等。下面是一个dScope.ini文件(for dos)的内容:
Load ..\..\ds51\8051.iof
Map 0,0xffff
dScope51 for Windows则直接用鼠标进入,然后用load装入待调文件。
2. (2) tScope51
与dScope51不同的是Scope51必须带目标板,目前它可以通过两种方式访问目标板。(1) 通过EMul51在线仿真器,tScope51为该仿真器准备了一个动态连接文件EMUL51.IOT,但该方法必须配合该仿真器。(2) 通过Monitov51监控程序,这种方法是可行的,tScope51为访问Monitor51专门带有MON51.IOT连接程序,使用时可通过串口及监控程序来调试目标板。
其使用方法为:
TS51[INIT(file_name.ini)]
其中file_name.ini为一个初使化文件。
进入TS51后,必须装入IOT文件,可用的有MON51.IOT及EMUL51.IOT两种,如装入MON51.IOT:
Load.C:\C51\TS51\MON51.IOT CPUTYPE(80517)
可惜的是tScope51只有for Dos的版本。
3. (3) Monitor 51
Monitor51是一个监控程序通过PC机的串口与目标板进行通信,Monitor操作需要MON51或dScope51 for Windows,后面部分将对Monitor51做较为详细的介绍。
4. 4. Ishell及uVision
1. (1) Ishell for Dos
这是一个for Dos的IDE,直接在命令行键入Ishell,则进入该环境,它使用简单方便。其命令行与DOS命令行具有同样的功能,对单模块的Project直接由菜单进行编译连接,对多模块的project。则通过批处理,BAT文件进行编译连接,然后通过菜单控制由dScope51或tScope51对程序进行调试,因为是for dos的,不做太详细介绍。
2. (2) uVision for Windows
uVision for Windows是一个标准的Windows应用程序,它是C51的一个集成软件开发平台,具有源代码编辑、project管理、集成的make等功能,它的人机界面友好,操作方便,是开发者的首选,具体配置及使用见第五部分。
2. 第二章 Keil C51软件使用详解
1. 第一节 Keil C51编译器的控制指令
C51编译器的控制指令分为三类:源文件控制类,目标文件控制类及列表控制类。
1. 1. 源文件控制类
NOEXTEND:C51源文件不允许使用ANSI C扩展功能。
DEFINE(DF):定义预处理(在C51命令行)。
2. 2. 目标文件(Object)控制类:
COMPACT LARGE SMALL 选编译模式
DEBUG(DB) 包含调试信息,以供仿真器或dSCope51使用。
NOAMAKE(NOAM) 禁止AutoMake信息记录
NOREGPARMS 禁止用寄存器传递参数
OBJECTEXTEND(OE) Object文件包含附加变量类型信息
OPTIMIZE(OT) 指定优化级别
REGFILE(RF) 指定一个寄存器使用的文件以供整体优化用
REGISTERBANK(RB) 指定一个供绝对寄存器访问的寄存器区名
SRC 不生成目标文件只生成汇编源文件
  其它控件不常用。
3. 3. 列表文件(listing)控制类:
CODE(CD):向列表文件加入汇编列表
LISTINCLUDE(LC):显示indude文件
SYMBOLS(SB):列表文件包括模块内所有符号的列表
WARNINGLEVEL(WL):选择“警告”级别
2. 第二节 dScope51的使用
1. 1. dScope51 for Dos
总的来说dScope51具有以下特性:
l 高级语言显示模式
l 集成硬件环境模拟
l 单步或“GO”执行模式
l 存储器、寄存器及变量访问
l Watch表达式之值
l 函数与信号功能
下面,具体说明在进入dScope51 for Dos之后,如何实现上述功能,dScope51采用下拉菜单格式和窗口显示控制,共有language、serial、exe、register四个窗口,其中exe为命令行窗口,language为程序窗口,serial为串口窗,register为寄存器窗。
1. (1) 高级语言显示模式
单击主菜单中的“View”,第一栏中的三条命令“Highlevel”、“Mixed”、“Assembly”分别对所装入的程序按照“高级”、“混合级”及“汇编级”三种方式显示,以方便调试使用。
2. (2) 集成硬件环境模拟显示
主菜单中“Peripheral”各条能显示模拟硬件环境的状态,其中:
i/o Port:显示各I/O口之值,对8031而言SFR中的P1、P2、P3、P0与引脚之值分别列出:
Interrupt:显示5个中断源的入口模式是否允许,优先级等中断状态。
Timer:显示各定时/计数器的模式,初始值状态等。
int Message:中断信息允许,如为允许(“>>”出现),则当中断申请时,显示中断源信息。比如当中断发生时会显示:
“interrupt Timer 0 occured”等
A/D converter:
  显示A/D转换器状态无时,则提示“无”。
Serial:串口信息显示,包括串口模式、波特产等
Other:其它器件,如为8031则显示“ 无”
3. (3) 单步或“Go”执行
“F8”单步执行,“F5”全速执行到断点。或选主菜单中Trace单步执行CPU中的Go全速执行。
4. (4) 存储器寄存器及变量访问
外部存储器管理MAP菜单:设置(set)、取消(reset)、显示(Display)处理可用存储空间。
修改Code代码:ASM命令
存储器显示命令:D 类别为(X、D、I、B、C)
修改存储器命令:E 有以下几种命令EB、EC、EI、EL、EF、EP
复杂数据类型显示:Object命令;用以显示结构或数组的内容。欲使此命令有效,C51编译器必须有DB及OBJECTEXTEND两条。
反汇编命令:U
5. (5) “Watch”表达式之值
在View菜单的“Watch”一栏中有四项:其中包括定义Watch Point(Define)、删除Watch Point(remove,kill all),及自动更新选项。
也可用WS、WK等命令代替,下面具体看“表达式”类型:
dScope51一次最多可设16个WtchPoint表达式,显示于Watch Window之中,表达式可以是简单变量,也可是复杂数据类型如结构、数组和指向结构的指针等,例如:
>WS *ptime
>WS ptime→hour
>WS some_record[o],analog等等
6. (6) 关于.IOF文件
启动DS51后必须装入.IOF文件才能使CPU及Peripheral各项起作用,这个函数的使用是依据8051系列CPU的不同特点,装入8051各CPU硬件设备模拟驱动文件,比如8031CPU就必须load DS51目录下的8051.IOF。
2. 2. dScope for Windows
dScope for windows具有dScope for dos的全部功能,此外,它还具有以下明显的优点:
(1) 标准的Windows界面,操作更容易更简单;
(2) 常用操作多用对话框,而非Dos的行命令方式;
(3) 窗口资源更加丰富:存储器窗口、覆盖率分析、运行状态分析窗口,加强了调试功能;
因为dScope for Windows功能强大,具体操作在第八章详细介绍。
3. 第三节 Monitor51及其使用
1. 1. Monitor51对硬件的要求
(1) 硬件系统为51系列CPU;
(2) 带5K外部程序存储器(从O地址开始),存放Monitor51程序;
(3) 256Bytes的外部数据存储器以及5K的跟踪缓冲区,此外,外部数据存储器必须足够容纳所有应用程序代码及数据,且所有外部数据存储器必须为冯·诺伊曼存储器,即能一致访问XDATA与Code空间。
(4) 一个定时器作为波特率发生器供串口使用;
(5) 6 Bytes的空余堆栈。
2. 2. Mon51的使用
Mon51的使用途径有三种方式:
(1) Dos行命令方式
即先用install对MON51进行配置,然后用MON51进入Monitor状态,启用各种命令对Monitor51进行调试。
(2) tScope51方式
启动tScope51装入TS51目录下的MON51.IOT驱动文件,与目标板通信。
(3) dScope51 for Windows方式
在选CPU驱动文件时,选“MON51.dll”,则检查目标板并进入MON51状态。
3. 3. MON51的配置
(1) MON51 for Dos的配置
运行install文件(在MON51目录下),不同的参数可以配置不同的硬件环境。INSTALL Serialtype [xdstastart[codestart[bank][PROMCHECK]]],具体说明见MON51帮助文件或使用手册。
(2) MON51 for Windows的配置
在启用MON51.dll时,会使得系统自动检查目标板连接,如配置不对,则弹出“Configuration”对话框,设置PC串口,波特率等,完毕单击“apply”有效。
4. 4. 串口连接图:
收发交叉互连,RTS、CTS直连,DSR、DTR直连,具体引脚排列参考串口资料。
5. 5. MON51命令及使用
详细的MON51命令可参阅帮助。
4. 第四节 集成开发环境(IDE)的使用
1. 1. Ishell for Dos的使用
进入Ishell之后看到两个窗口:一个是文件窗口,一个是Dos命令行窗口,窗口上方是下拉式的命令菜单,其中的Files控制文件窗口的显隐。
使用Ishell,第一步就是配置系统,即要学习两个文件的修改与创建:
1. (1) Ishell.CFG文件
每一个project都有一个Ishell.CFG,其中存放有“Option菜单和Setup菜单下的部分信息;Bell enabled、Monochrome enabled、Editor Selected、CRT Lines、target enviroment、name of user edit、Automatic load for configuration enabled、file window enabled、file specification for file window、translate command line controls、project name等。
对每个project都必须设置以上信息,然后存盘“setup”的的“save”,这样才可正式开始下面工作。
2. (2) IShell.col文件
对IDE颜色设置,如不改动,可以缺省为主。
3. (3) CDF文件
该文件位于BIN目录下,每一文件定义一组外部函数工具包,即定义外部环境如8051.CDF,USER.CDF等,开发者可修改CDF文件,供自己使用,至于CDF文件内容可查看一下8051.CDF即可知道。注意.CDF文件是Ishell系统的核心所在,不同的CDF文件可使本IDE适用于不同的编译、连接系统,即本IDE并不仅适于C51。
下面谈一谈Automake工具:
C51的Automake是一个project管理器,在8051工具包中以OBJECT文件形式保留了一个project的信息,AutoMake用这些信息来进行project管理,一旦手工建立一个project,Automake可生成一个新的OBJECT,AutoMake利用此文件来编译那些修改过的文件。
Automake支持C51、A51、L51/BL51、C166、A166、L166等编译连接器。点中主菜单中的Automake即运行本工具。
Ishell for Dos使用比较繁琐,推荐使用uVision for windows。
2. 2. uVision for windows的使用
uVision是一个标准的windows应用程序,其编译功能、文件处理功能、project处理功能、窗口功能以及工具引用功能(如A51、C51、PL/M41、BL51 dScope等)等都较Ishell for Dos要强得多。
uVision采用BL51作连接器,因为BL51兼容L51,所以一切能在Dos下工作的project都可以到uVision中进行连接调试。
uVision采用dScope for windows作调试器,该调试器支持MON51及系统模拟两种方式,功能较for DOS要强大好用,调试功能强大。
注意:
(1) Option菜单下的各项要会使用,其中A51、C51、PL/M51、BL51定义各文件所使用的编译、连接控制指令,dScope定义一个dScope初始化文件。Make则是定义一个make文件。
(2) 进入调试是在RUN菜单下运行dScope。
(3) project中包括新建、打开、修改、更新、编译、连接等poject处理,具体使用可参考后面的例子。
3. 第三章 Keil C51 vs 标准C
深入理解并应用C51对标准ANSIC的扩展是学习C51的关键之一。因为大多数扩展功能都是直接针对8051系列CPU硬件的。大致有以下8类:
l 8051存储类型及存储区域
l 存储模式
l 存储器类型声明
l 变量类型声明
l 位变量与位寻址
l 特殊功能寄存器(SFR)
l C51指针
l 函数属性
具体说明如下(8031为缺省CPU)。
1. 第一节 Keil C51扩展关键字
C51 V4.0版本有以下扩展关键字(共19个):
_at_  idata sfr16 alien interrupt small
bdata large _task_ Code bit pdata
using reentrant xdata compact sbit data sfr
2. 第二节 内存区域(Memory Areas):
1. 1. Pragram Area:
由Code说明可有多达64kBytes的程序存储器
2. 2. Internal Data Memory:
内部数据存储器可用以下关键字说明:
data:直接寻址区,为内部RAM的低128字节 00H~7FH
idata:间接寻址区,包括整个内部RAM区 00H~FFH
bdata:可位寻址区,   20H~2FH
3. 3. External Data Memory
外部RAM视使用情况可由以下关键字标识:
xdata:可指定多达64KB的外部直接寻址区,地址范围0000H~0FFFFH
pdata:能访问1页(25bBytes)的外部RAM,主要用于紧凑模式(Compact Model)。
4. 4. Speciac Function Register Memory
8051提供128Bytes的SFR寻址区,这区域可位寻址、字节寻址或字寻址,用以控制定时器、计数器、串口、I/O及其它部件,可由以下几种关键字说明:
sfr:字节寻址 比如 sfr P0=0x80;为PO口地址为80H,“=”后H~FFH之间的常数。
sfr16:字寻址,如sfr16 T2=0xcc;指定Timer2口地址T2L=0xcc T2H=0xCD
sbit:位寻址,如sbit EA=0xAF;指定第0xAF位为EA,即中断允许
还可以有如下定义方法:
sbit 0V=PSW^2;(定义0V为PSW的第2位)
sbit 0V=0XDO^2;(同上)
或bit 0V-=0xD2(同上)。
2. 第二节 几类重要库函数
1. 1. 专用寄存器include文件
例如8031、8051均为REG51.h其中包括了所有8051的SFR及其位定义,一般系统都必须包括本文件。
2. 2. 绝对地址include文件absacc.h
该文件中实际只定义了几个宏,以确定各存储空间的绝对地址。
3. 3. 动态内存分配函数,位于stdlib.h中

4. 4. 缓冲区处理函数位于“string.h”中
其中包括拷贝比较移动等函数如:
memccpy memchr memcmp memcpy memmove memset
这样很方便地对缓冲区进行处理。
5. 5. 输入输出流函数,位于“stdio.h”中
流函数通8051的串口或用户定义的I/O口读写数据,缺省为8051串口,如要修改,比如改为LCD显示,可修改lib目录中的getkey.c及putchar.c源文件,然后在库中替换它们即可。
3. 第三节 Keil C51库函数原型列表
1. 1. CTYPE.H
bit isalnum(char c);
bit isalpha(char c);
bit iscntrl(char c);
bit isdigit(char c);
bit isgraph(char c);
bit islower(char c);
bit isprint(char c);
bit ispunct(char c);
bit isspace(char c);
bit isupper(char c);
bit isxdigit(char c);
bit toascii(char c);
bit toint(char c);
char tolower(char c);
char __tolower(char c);
char toupper(char c);
char __toupper(char c);
2. 2. INTRINS.H
unsigned char _crol_(unsigned char c,unsigned char b);
unsigned char _cror_(unsigned char c,unsigned char b);
unsigned char _chkfloat_(float ual);
unsigned int _irol_(unsigned int i,unsigned char b);
unsigned int _iror_(unsigned int i,unsigned char b);
unsigned long _irol_(unsigned long l,unsigned char b);
unsigned long _iror_(unsigned long L,unsigned char b);
void _nop_(void);
bit _testbit_(bit b);
3. 3. STDIO.H
char getchar(void);
char _getkey(void);
char *gets(char * string,int len);
int printf(const char * fmtstr[,argument]…);
char putchar(char c);
int puts (const char * string);
int scanf(const char * fmtstr.[,argument]…);
int sprintf(char * buffer,const char *fmtstr[;argument]);
int sscanf(char *buffer,const char * fmtstr[,argument]);
char ungetchar(char c);
void vprintf (const char *fmtstr,char * argptr);
void vsprintf(char *buffer,const char * fmtstr,char * argptr);
4. 4. STDLIB.H
float atof(void * string);
int atoi(void * string);
long atol(void * string);
void * calloc(unsigned int num,unsigned int len);
void free(void xdata *p);
void init_mempool(void *data *p,unsigned int size);
void *malloc (unsigned int size);
int rand(void);
void *realloc (void xdata *p,unsigned int size);
void srand (int seed);
5. 5. STRING.H
void *memccpy (void *dest,void *src,char c,int len);
void *memchr (void *buf,char c,int len);
char memcmp(void *buf1,void *buf2,int len);
void *memcopy (void *dest,void *SRC,int len);
void *memmove (void *dest,void *src,int len);
void *memset (void *buf,char c,int len);
char *strcat (char *dest,char *src);
char *strchr (const char *string,char c);
char strcmp (char *string1,char *string2);
char *strcpy (char *dest,char *src);
int strcspn(char *src,char * set);
int strlen (char *src);
char *strncat (char 8dest,char *src,int len);
char strncmp(char *string1,char *string2,int len);
char strncpy (char *dest,char *src,int len);
char *strpbrk (char *string,char *set);
int strpos (const char *string,char c);
char *strrchr (const char *string,char c);
char *strrpbrk (char *string,char *set);
int strrpos (const char *string,char c);
int strspn(char *string,char *set);
6. 第六章 Keil C51例子:Hello.c

Hello位于\C51\excmples\Hello\目录,其功能是向串口输出“Hello,world”整个程序如下:
#pragma DB OE CD
#indule <reg51.h>
#include<stdio.h>
void main(void)
{
  SCOn=0x50;
  TMOD=0x20
  TH1=0xf3;
  Tri=1;
  TI=1;
  printf(“Hello,world \n”);
  while(1) { }
}
1. 第一节 uVision for Windows的使用步骤
(1) file_new新建一个hello.c文件,输入如上内容或直接用目录下源文件。
(2) file_save或工具栏将文件存盘。
(3) project_new project创建一个project名为hello,并在其中加入hello.c。
这时该project已是打开状态,或用open project打开已存在的project。
(4) option_C51 compiler中选出至少包括两项DB OE。
(5) option_dscope Debugger选中hello\DS51.INI
查看DS51.INI看其是否为:
“load…\…\BIN\8051.DLL
map 0, 0xffff”
否则修改。
(6) 在option_make选make文件顺序。
(7) project选Build project,看是否有语法错误,若无则生成HEX文件,若有则修改源文件后重复以上部分步骤。
(8) run_dScope debugger进入dScope51后装入hello则可用go直接运行看serial窗口有无输出,正常每系统运行一次,serial窗口均出现一个“Hello,world”表明运行无误。
2. 第二节 Ishell for Dos使用步骤
(1) 进入Ishell 用Setup editer选择编辑器。
然后单击Edit或用Edit命令编辑hello.c源文件,存盘,也可以在files窗口中直接选中hello.c。
(2) 用cd改换project目录至hello目录。
(3) 在setup_target一项目选8051。
(4) 在setup_C51中输出DB OE。
(5) 在setup_project输入project名hello。
(6) 在setup_save保存Ishell.CFG文件。
(7) 编辑一个Link文件hello.lin中有“hell.obj”一行。
(8) 由光标落在files菜单中的Hello.c上,单击“translate”,如无语法错,再击“link”,则Hex文件生成。
(9) 单击Simulate如在8051.CDF中选Simulate为dScope则进入dScope调试直接“Go”,看serial窗口输出为“Hello.world”。
(10) 如程序有误修改源代码后不必再translate或link了,只要一步Amake即可。
若project中包括不止一个文件,在DOS的Ishell中不能用Translate编译,而应建立bat文件,直接在命令窗编译,然后link连接。
如还需用Translate则只能多个文件分别编译,然后连接。
7. 第七章 Keil C51的代码效率
C51程序编译生成汇编代码的效率,是由许多因素共同决定的,对于Keil C51,主要受以下两种因素影响:
1. 第一节 存储模式的影响
存储模式决定了缺省变量的存储空间,而访问各空间变量的汇编代码的繁简程度决定了代码率的高低。
例如:一个整形变量i,如放于内存18H、19H空间,则++i的操作编译成四条语句:
INC 0x19
MOV A,0x19
JNZ 0x272D
INC 0x18
0x272D:
而如果放于外存空间0000H、0001H则++i的操作编译成九条语句:
MOV DPTR,0001
MOVX A,@ DPTR
INC A
MOVX @ DPTR,A
JNz #5
MOV OPTR,#0000
MOVX A,@DPTR
INC A
MOVX @ DPTR,A
就汇编之后的语句而言,对外部存储器的操作较内部存储器操作代码率要低得多,生成的语句为内存的两倍以上,而程序中有大量的这种操作,可见存储模式对代码率的响了。
因此程序设计的原则是
1、存储模式从small-Compact-large依次选择,实在是变量太多,才选large模式。
2、即使选择了large模式,对一些常用的局部的或者可放于内存中的变量,最好放于内存中,以尽量提高程序的代码率。
2. 第二节 程序结构的影响
程序的结构单元包括模块、函数等等。同样的功能,如果结构越复杂,其所涉及的操作、变量、功能模块函数等就越多,较之结构性好,代码简单的程序其代码率自然就低得多。
此外程序的运行控制语句,也是影响代码率的关键因素,例如:switch -case语句,许多编译器都把它们译得非常复杂,Keil C51也不例外,相对较为简易的Switch-case语句,编译成跳转指令形式,代码率较高,但对较为复杂的Switch-Case,则要调用一个系统库函数?C?ICASE进行处理,非常复杂。
再如if( ),while( ),等语句也是代码相对较低的语句,但编译以后比switch-case要高得多。
因此建议设计者尽量少用switch-case之类语句来控制程序结构,以提高代码率。
除以上两点外,其它因素也会对代码率产生影响,例如:
是否用寄存器传递参数 即NOAREGS选项是否有
是否包括调试信息:即DEBUG选项
是否包括扩展的调试信息:即BJECTEXTEND
8. 第八章 dScope for Windows使用详解
1. 第一节 概述
1. 1. 主窗口(Mainframe Window)
可设置其它各种调试窗口,设置断点、观察点,修改地址空间,加载文件等等;
2. 2. 调试窗口(DEBUG Window)
支持用户程序的各种显示方式,可连续运行,单步运行用户程序,并可在线 汇编;
3. 3. 命令窗口(Command Window)
支持命令行的输入;
4. 4. 观察窗口(Watch Window)
可设置所要观察的变量、表达式等;
5. 5. 寄存器窗口(Registe Window)
显示内部寄存器的内容,程序运行次数等;
6. 6. 串口窗口(Serical Windows)
显示串口接收和发送的数据;
7. 7. 性能分析窗口
显示所要观察的各程序段占用CPU的空间;
8. 8. 内存窗口(Memory Window)
显示所选择的内存中的数据;
9. 9. 符号浏览窗口(Symbol Browser Window)
显示各种符号名称,包括专有符号,用户自定义符号(函数名、变量、标号)等;
10. 10. 调用线窗口(Call-Stack Window)
动态显示当前执行的程序段的函数调用关系;
11. 11. 代码覆盖窗口
提供当前模块内各程序段中被执行代码的比率;。
12. 12. 外围设备窗口(peripherals)
可显示I/O口,定时器,中断,串口等外围设备状态;
2. 第二节 dScope for Windows基本操作
1. 1. 指定初始化文件
在uVision的Option菜单dScope Debugger中指定dScope的初始化文件,用uVision的RUN启动dScope将自动加载此初始化文件,自动执行其中命令;
下面是一个例子,可以看出调入一个调试代码的过程。Ds51.ini:
load 8051.dll
load test
slog>>test.log
xtal=11.0592
define button "go to main","g,main"
ws RevCounter
ws rm.r
g,main
PA RESET
PA serial
PA timer0
2. 2. 观察变量
方法1:命令行
WS expression [, numberbase ] [ LINE ]
其中numberbase为显示数制,10对应10进制,16对应16进制,缺省为16进制。LINE为单行显示,缺省为多行显示。
方法2:setup->Watchpoints,在对话框中输入变量
3. 3. 显示RAM的值
d i(x,d):起始地址,终止地址
d 变量名
4. 4. 观察堆栈
View->Call-stack->Show invocation,可以跟踪调用过程;
5. 5. 中断处理程序调试
在装入8051.dll后,在dScope的主菜单中将增加Peripherial,其有4个字菜单:
I/0 port:Pi端口状态
Interrupt:中断设置
Timer:定时器中断状态
Serial:串口中断状态
设置相应的中断请求标志位即可产生中断。
6. 6. 性能分析(Performance Analyzer:PA)
PA用来分析一段代码执行占用CPU的百分比。定义:
命令行 PA func_name
3. 第三节 dScope for Windows命令文件的编制
dScope除了用命令行的方式进行调试以外,还可将各种调试命令汇集于一个调试文件中,然后调用该文件,就可达到自动测试用户源代码的目的。dScope的命令文件支持C/PL/M的格式,因而编制调试命令文件与编制C语言程序有些类似。
1. 1. 地址空间及地址空间类型
1. (1) 地址空间分段
dScope提供的最大可用空间为16M,实际上我们只用以下三段:
① 内部数据空间段(0X00段或D段)
0X00:0X0000~0X00:0XFFFF(对MSC51而言为0X00:0X00FF)
② 外部数据空间段(0X01段式或X段)
0X01:0X0000~0X01~0XFFFF
③ 程序空间段(0XFF段或C段)
0XFF:0X0000~0XFF:0XFFFF
2. (2) 地址空间类型
C:代码空间
D:内部直接寻址空间
I: 内部间接寻址空间
X:外部数据空间
B:位寻址空间
P:I/O口
EB:扩展的位寻址空间(MCS251专有)
ED:扩展的数据空间(MCS251专有)
CO:常数空间(MCS251专有)
HC:正常数空间(MCS251专有)
2. 2. 常量
dScope支持十六进制、八进制、十进制、二进制常数,其后缀分别为H、Q(O)、T(或无)、Y;
dScope不区分常量的大、小写。
1. (1) 整型常量
分为整型(int),无符号整型(uint,00rd),长整型(long),无符号长整型(Wlong、Word)。
2. (2) 浮点型常量
与ANSI C相同。
3. (3) 字符串常量
与ANSI C相同
4. (4) 字符常量
分为字符型(Char)和无符号字符型(Uchar)一种。
5. (5) 行号常数
指用户程序中的行号,实际上是个地址
6. (6) 位常量(Bit):
0和1
7. (7) 地址常数
地址常数的种类很多,地址常数不同于行号常数,行号常数就是一个地址,而地址数被引用时,实际上是取该地址中的数据。
C:代码地址常数,如C:0X0012或0XFF:0X0012
D:内部直接寻址地址常数,如D:0X0068或0X00:0X0068
I:内部间按寻址地址常数,如I:0X0010或0X00:0X0010
X:外部数据空间地址常数,如X:0X0028或0X01:0X0028
B:位地址常数,如B:0X20或B:0X24.0
EB:扩展的位地址常数(MCS251专有),
ED:扩展的数据空间地址常数(MCS251专有)
CO:常数空间地址常数(MCS251专有)
HC:正常数空间地址常数(MCS251专有)
8. (8) 标识符常量
即用户源程序中的标号、函数名等,实际上代表某一地址。
9. (9) 用户源程序中定义的常数
3. 3. 变量
dScope所支持的变量名或标识符最多可由31个字符组成,第一个字母为A~Z,a~z,下划线或问号,后续字符可为字母、数字、下划线和问号。除CPU变量和系统变量外,dScope不支持全局变量,但可视“define”命令定义的变量为全局变量。
Dscope所支持的变量分为以下几种(变量名称不区分大、小写),支持类型转换:
1. (1) 整型变量
分为整型变量(int)、无符号整型变量(uint/word),长整型(Long) 、无符号长整型(Ulong/dword)。
2. (2) 浮点型变量(float)
与ANSI C相同。
3. (3) 字符型变量L
分为字符型(char)变量和无符号字符型(Uchar)
4. (4) 位变量(Bit)
5. (5) 系统变量
dScope自己定义了一系列内部变量,用户可对这些变量进行读或读/写操作, 可被用户自定义数所引用。
a. Cycles (Read Only)
32位变量(Ulong),指示当前程序执行已花费的指令周期(cycle)。
b. Ramsize(R/W)
16位变量(Uint),指示内部可直接寻址的数据空间大小。
c. Radix(R/N)
8位变量(Uchar),决定输出的数制
Radix=0X0A (10进制),Radix=0X10 (16进制)
d. -IIP-(R/W)
8位变量(Uchar),指示当前的中断嵌套数目。
e. $ (R/W)
32位变量(Ulong),指出PC值,通过对其进行写操作,可改变程序执行的流程。
f. Itrace (R/W)
8位变量(Uchar),决定是否对程序运行情况进行记录
Itrace=1,使能记录操作
Itrace=0,根本上记录操作
g. __Break__(R/W)
8位变量(Uchar) __Break__=1,中止程序的运行
h. __Mode__和__Frame size__是MCS 251专有的变量。
6. (6) CPU变量
即R0~R7、A、C(位变量)、B、DPTR及特殊功能寄存器变量,对这些变量均可进行读、写操作。
7. (7) 用户源程序中定义的变量、数组、结构等
4. 4. 运算符
dScope支持ANSI C的运算符,包括算术运算符,逻辑运算符,关系运算符。
5. 5. 表达式
以运算符将dScope所支持的常量、变量、函数等连接在一起,就构成了dScope的表达式。
6. 6. 数组
dScope不支持在命令文件中定义数组,但可引用用户程序中的数组,引用方式如同C。
7. 7. 结构和联合
dScope不支持在命令文件中定义结构和联合,但可引用用户程序中的结构和联合,引用方式如同C,但如要输出整个结构或联合的结果,就要用命令“OBJ”。
8. 8. 指针:
不可自定义指针,但支持用户源程序中的指针变量。
9. 9. dScope命令语句
dScope提供了一系列调试命令。在命令文件中,dScope只支持这些语句及前述定义的表达式,C语言的语句均不被支持,但在命令文件所包含的用户自定义函数(非用户源程序中的函数)中支持C语句,但用户自定义函数中同样不支持数组、结构、联合和指针。
1. (1) ASM
在线汇编命令,格式如下:
ASM C:0Xnnnn (或标号);设定插入汇编指令的地址
ASM 汇编指令
ASM 汇编指令
插入完毕后,在debug窗口内选择“Assemble->Assemble”完成编译。
2. (2) Assign
串行口分配指令,格式如下:
Assign channel<unreg>outreg
对MCS51为:Assign Win<SOIN> Soot
但目前的dScope版本并未提供完整串口窗口功能。
3. (3) Define
用户自定义变量指令,格式如下:
Define <类型> <变量名>
类型一为如前所述的变量类型,Define指令定义的变量可能为全局变量,可为用户自定义函数所引用。
4. (4) Display
内存显示命令,格式如下二:
D 起始地址,结束地址
地址如前所述的地址常数,标识符常量。
5. (5) Enter
内存修改指令,格式如下:
E 类型地址=表达式 [表达式2],[……]
类型如前所述,地址如前所述的地址常数。表达式如前所述,但如果是函数名称(含标号、指针变量),则关键字E→EP
6. (6) Map/Reset map
Map为内存段修改指令,Reset map将内存段复位或缺省值。
7. (7) Object
用以引用用户源程序中的结构(联合)、数组、格式如下:
Obj表达式 [n,],[Line]
表达式为用户源程序中的数组,结构(联合)名称。当Line缺省时,数目、结构(联合)的内容按n行输出;如有Line,则单行输出。
8. (8) U
反汇编命令,格式如下:
U [地址]
地址包括地址常 数及标识符常量,指明反汇编的起始地址。
9. (9) WK
观察点删除命令,格式如下:
WK n1[n2 ],[……] ;删除指定的观察点,n为字符型,整型
常数
WK * ;删除所有的观察点
10. (10) WS
观察点设置命令,格式如下:
WS 表达式[,n][LINE]
关键字LINE存在时,观察点表达式单行输出
LINE缺省时,观察点表达式n行输出。
11. (11) G
连续运行命令,格式如下:
G [起始地址],[终止地址]
地址为标识符常量或地址常数,地址缺省时,为连续运行。
12. (12) T/P
单步运行指令,格式如下:
T/P n ;n指至单行运行的步数,P指给用户当调用某函数时,把它作为一步处理,并不进入该函数运行。
13. (13) PA
性能分析操作指令,其分以下几种:
PA
显示当前所设置的性能分析程度段
PA Kill<SPAN style="mso-s
Oct 30
 许多朋友在制作Word文档时,为使文档更加美观,喜欢在其中加上水印。而通常制作水印的方法是通过图形的层叠来实现的,但如果需要为文档中的每一页都
加有相同水印的话,使用上述方法就未免太繁琐了。其实巧妙应用“页眉页脚”命令,可以轻松完成为每页添加水印的操作。方法如下:



  1. 制作好文档后,通过“视图→页眉页脚”命令,调出“页眉页脚”工具栏,单击其中的“显示→隐藏文档正文文字”按钮,隐藏正文部分的文字内容。



  2. 选择“插入”菜单中的“文本框”命令,在页眉的下方插入一个空文本框。



  3. 在文本框内加入作为水印的文字、图形等内容,右击图片,选择快捷菜单中的“设置图片格式”命令,在对话框中“图片”选项卡下,通过“图像控制”改变图像的颜色,对比度和亮度,并手动调整图片的大小。   



  4. 通过“设置文本框格式”命令,把文本框的线条色改为无线条色。



  5. 单击“页眉页脚”工具栏的“关闭”按钮,退出“页眉页脚”编辑。



  完成上述步骤的操作,水印制作得以完成,这样就为每一页都添加了相同的水印。

Oct 26

   1. 什么是grub

  grub 是一个多重启动管理器。grub是GRand Unified Bootloader的缩写,它可以在

多个操作系统共存时选择引导哪个系统。它可以引导的操作系统包括Linux,FreeBSD,So

laris,NetBSD,BeOSi,OS/2,Windows95/98,Windows NT,Windows2000。它可以载入操作系

统的内核和初始化操作系统(如Linux,FreeBSD),或者把引导权交给操作系统(如Win

dows 98)来完成引导。

2. grub的特点

  grub可以代替lilo来完成对Linux的引导,特别适用于linux与其它操作系统共存情

况,与lilo相比,它有以下特点:

支持大硬盘

  现在大多数Linux发行版本的lilo都有同样的一个问题:根分区(/boot分区)不能分

在超过1024柱面的地方,一般是在8.4G左右的地方,否则lilo不能安装,或者安装后不

能正确引导系统。而grub就不会出现这种情况,只要安装时你的大硬盘是在LBA模式下,

grub就可以引导根分区在8G以外的操作系统。

支持开机画面

  grub支持在引导开机的同时显示一个开机画面。对于玩家来说,这样可以制作自己

的个性化开机画面;对于PC厂商,这样可以在开机时显示电脑的一些信息和厂商的标志

等。grub支持640x480,800x600,1024x768各种模式的开机画面,而且可以自动侦测选择

最佳模式,与Windows那320x400的开机画面不可同日而语。

两种执行模式

  grub不但可以通过配置文件进行例行的引导,还可以在选择引导前动态改变引导时

的参数,还可以动态加载各种设备。例如你在Linux下编译了一个新的核心,但不能确定

它能不能工作,你就可以在引导时动态改变grub的参数,尝试装载这个新的核心进行使

用。Grub的命令行有非常强大的功能,而且支持如bash或doskey一样的历史功能,你可

以用上下键来寻找以前的命令。

菜单式选择

  在lilo下,你需要手工输入操作系统的名字来引导不同的操作系统。而grub使用一

个菜单来选择不同的系统进行引导。你还可以自己配置各种参数,如延迟时间,默认操

作系统等。

分区位置改变后不必重新配置

  lilo是通过读取硬盘上的绝对扇区来装入操作系统,因此每次分区改变都必须重新

配置lilo,例如你用PQ magic调整了分区的大小,那lilo在你重新配置好之前就不能引

导这个分区的操作系统了。而grub是通过文件系统直接把核心读取到内存,因此只要操

作系统核心的路径没有改变,grub就可以引导系统。 除此之外,Grub还有许多非常强大

的功能。例如支持多种外部设备,动态装载操作系统内核,甚至可以通过网络装载操作

系统核心。Grub支持多种文件系统,支持多种可执行文件格式,支持自动解压,可以引

导不支持多重引导的操作系统等。

3. grub的使用

安装grub

  如果已经安装了蓝点Linux2.0则grub是默认安装的。要把grub重新安装到主引导扇

区上,只需要简单打入makebootable命令就可以了。

制作grub启动盘

  首先确定grub已经安装,然后进入grub的目录,键入:

  #cd /boot/grub

  放入一张软盘,然后敲入命令:

  #dd if=stage1 of=/dev/fd0 bs=512 count=1

  #dd if=/stage2 of=/dev/fd0 bs512 seek=1

  这样就可以做好一张启动盘了。

开机

  安装了grub开机后会出现一个菜单,列出所有的启动选项。如果设置了启动画面则

会显示启动画面,按Esc键则可以取消启动画面显示菜单选项。蓝点Linux所带的grub的

命令提示是全中文的,在菜单下面详细列出如按e是编辑启动命令,按c是使用命令行等

。用上下键可以选择菜单项,按回车启动所选项。按e键可以编辑所选项的启动命令,你

可以用这个功能临时改变你的系统的启动参数,参见配置grub一节。按c键则进入命令行

模式。   

  在命令行模式下可以打入命令直接执行,例如你可以敲入poweroff关闭计算机。按

Tab键可以列出所有支持的命令。蓝点Linux已经把grub汉化了,其中一部分命令敲入名

字后会给出中文提示,显示命令的用法和参数。

4. 配置grub

  grub启动时会在/boot/grub/中寻找一个名字为menu.lst的配置文件,如果找不到此

文件则不进入菜单模式而直接进入命令行模式。

  menu.lst 是一个文本文件,你可以用任何一个文本编辑器来打开它。每一行代表一

个配置命令,如果一行的第一个字符为井号"#"则这一行为注释,你可以简单地用增加或

减少注释行来改变配置。

编辑menu.lst,一般会有以下各行

timeout second

设定在second秒之后引导默认的操作系统。

蓝点Linux默认是timeout 5,就是5秒没有其他指令就引导系统,如果设成-1,则grub会

一直等待直到用户选择一个选项为止。

default num

默认启动第num+1行选项,也就说default=0则默认启动菜单第一行的操作系统,defaul

t=1则启动第2行的系统,如此类推。

splash pathname/filename

指出开机画面的文件所存放的路径和文件名,如 splash /boot/logo/800x600x8.img 是

指用在/boot/logo路径下的800x600.img文件作为开机画面

title OSname title

后面的字符就是你在菜单项上所看见的选项,你可以写上操作系统的名字和描述,如用

title BluePoint Linux, Single Mode 代表这一选项是引导蓝点Linux的单用户模式。

下面结合两个系统引导描述来解释几个引导选项的意义

title BluePoint Linux, Default Mode

root (hd0,1)

kernel /boot/vmlinuz vga=auto root=/dev/hda2

hd0是指第一个硬盘(主硬盘) (hd0,1)是指第一个硬盘的第二个分区。 kernel /boot/v

mlinuz 是指出Linux核心的路径在/boot/vmlinuz中。vga=auto 是设定显示模式,root

=/dev/hda2是指把第一个硬盘的第二个分区作为根挂载点("/")。

title Microsoft Windows

root (hd1,0)

chainloader (hd1,0)+1

root (hd1,0)这是指第二个硬盘(从硬盘)上第一个分区

chainloader (hd1,0)+1 装入一个扇区的数据然后把引导权交给它。

5. 从软盘启动grub

  制作启动盘后可以用软盘启动引导硬盘上的操作系统 插入制作好的启动软盘,进入

BIOS设定软盘启动。软盘启动成功后就会进入grub的命令行模式

grub>

  要启动一个操作系统,首先指定引导哪个分区上的系统,例如要引导指第一个硬盘

上的第一个分区的操作系统,先键入

grub>root (hd0,0)

  接着如果要启动的是Windows系统,键入

grub>chainloader (hd0,0)+1

  注意(hd0,0)要随着硬盘和分区的不同而改变数字。 如果要引导Linux或其他系统,

应键入

grub>kernel (hd0,0)/boot/vmlinuz root=/dev/hda1

  注意hda1参数也要随着硬盘和分区的不同而改变,如从第二个硬盘的第一个分区引

导则用hdb1。

  最后敲入boot就可以启动系统了。

  在任何时候不能确定命令或者命令的参数都可以按Tab获得相关的帮助。用上下键可

以获得命令的历史记录。 其实这些命令就是menu.lst的启动描述,您也可以根据那些描

述来自己键入启动命令,最后敲入boot就可以引导系统了。
Oct 26

   (一)安装linux时安装grub.

安装redhat linux时会提示安装引导程序,如果选择grub为引导程序,建议把grub安装到硬盘的引导扇区MBR.grub
还可以引导其它操作系统,如 FreeBSD、NetBSD、OpenBSD、GNU HURD 和 DOS,以及 Windows
95、98、NT、2000、XP。

(二)grub的配置

一旦选择了grub为引导程序,下面我们来了解一下它的配置.

/boot/grub/grub.conf是grub产生一个引导选择菜单以及设置一些选项.下面是我的grub.conf:

#==========例子开始==========

# grub.conf generated by anaconda

#

# Note that you do not have to rerun grub after making changes to this file

# NOTICE: You have a /boot partition. This means that

# all kernel and initrd paths are relative to /boot/, eg.

# root (hd0,6)

# kernel /vmlinuz-version ro root=/dev/hda10

# initrd /initrd-version.img

#boot=/dev/hda

default=0

timeout=10

splashimage=(hd0,6)/grub/splash.xpm.gz

# --> Redhat linux 8.0 <--

title Red Hat linux (2.4.18-14)

root (hd0,6)

kernel /vmlinuz-2.4.18-14 ro root=LABEL=/

initrd /initrd-2.4.18-14.img

# --> Microsoft Windows XP <--

title Microsoft Windows XP

rootnoverify (hd0,0)

chainloader +1

#===========例子结束==========

配置选项解释:

以"#"开头的是注释行.

我这里有两个操作系统,分别是Red Hat linux和Microsoft Windows XP.

其中 timeout标识默认等待时间,我这设置为10秒,超过10秒用户还没作出选择的话,将自动选择默认的操作系统(我这里默认的是Redhat linux 8.0)

默认的操作系统是由default一项来控制的,default后的数字表明第几个是默认的,这里0表示第一个,1表示第二个.所以如果你想修改默认的操作系统,就修改default后的数字.

title一项是设置操作系统的名称,grub不支持中文(有点遗憾).

splashimage一项指定grub界面的背景图片,有兴趣的朋友可以修改grub的背景哦!

root
(hd0,6)标识从第一个硬盘,第7个分区来启动搜索引导内核.注意这儿的root与linux的root分区不同,此root非彼root也!
grub的硬盘标识方法与linux的有点不同.在linux中第一个主分区为hda1,第二个主分区为hda1,第一个逻辑分区为hda5,而在
grub中是以(hdx,y)来标识的,如第一个主分区为(hd0,0)第一个逻辑分区为(hd0,1)依此类推.所以这儿root后面的是你的
/boot所在分区标识.

知道了内核在哪儿,还要具体指出哪个文件是内核文件,这就是kernel的工作。

kernel /vmlinuz-2.2.18-14 ro root=LABEL=/.说明/boot/vmlinuz-2.2.18-14
就是要载入的内核。后面的都是传递给内核的参数。ro是以readonly的意思。注意我这里内核前面的路径是"/",因为我的boot单独分了一个区,
如果你没有为boot单独分区,那么内核前面的路径就是"/boot".

initrd用来初始的linux image,并设置相应的参数

再来看一看windows的定义段吧。

这里,我添加了一项来引导 WindowsXP。要完成此操作,GRUB 使用了"链式装入器"(chainloader)。链式装入器从分区
(hd0,0) 的引导记录中装入 winXP 自己的引导装入器,然后引导它。这就是这种技术叫做链式装入的原因 --
它创建了一个从引导装入器到另一个的链。这种链式装入技术可以用于引导任何版本的 DOS 或
Windows。如果你在计算机中装有win98,winme,win2k,winxp的话,chainloader会把引导权交与win的
NTLoader来引导.

(三)Grub启动盘的制作

要制作引导盘,需执行一些简单的步骤。首先,在新的软盘上创建 ext2 文件系统。然后,将其安装,并将一些 GRUB 文件复制到该文件系统,最后运行 "grub" 程序,它将负责设置软盘的引导扇区。

将一张空盘插入 1.44MB 软驱,输入:

# mke2fs /dev/fd0

创建了 ext2 文件系统后,需要安装该文件系统:

# mount /dev/fd0 /mnt/floppy

现在,需要创建一些目录,并将一些关键文件(原先安装 GRUB 时已安装了这些文件)复制到软盘:

# mkdir /mnt/floppy/boot

# mkdir /mnt/floppy/boot/grub

# cp /boot/grub/stage1 /mnt/floppy/boot/grub

# cp /boot/grub/stage2 /mnt/floppy/boot/grub

再有一个步骤,就能得到可用的引导盘。

在linux bash中,从 root 用户运行"grub",该程序非常有趣并值得注意,因为它实际上是 GRUB
引导装入器的半功能性版本。尽管 linux 已经启动并正在运行,您仍可以运行 GRUB 并执行某些任务,而且其界面与使用 GRUB 引导盘或将
GRUB 安装到硬盘 MBR 时看到的界面(即GRUB控制台)完全相同。

在 grub> 提示符处,输入:

grub> root (fd0)

grub> setup (fd0)

grub> quit

现在,引导盘完成了。

(四).恢复被windows破坏的grub.

如果你用grub来引导linux和windows,当windows出毛病重新安装后,会破坏MBR中的grub,这时需要恢复grub.

1.把linux安装光盘的第一张放到光驱,然后重新启动机器,在BOIS中把系统用光驱来引导。

2.等安装界面出来后,按[F4]键,也就是linux rescue模式。

3.一系列键盘以及几项简单的配制,过后就[继续]了。。。这个过程,我不说了,比较简单。

4.然后会出现这样的提示符:

sh#

5.我们就可以操作GRUB了.输入grub:

sh#grub

会出现这样的提示符:

grub>

我们就可以在这样的字符后面,输入:

grub>root (hdX,Y)

grub>setup (hd0)

如果成功会有一个successful......

这里的X,如果是一个盘,就是0,如果你所安装的linux的根分区在第二个硬盘上,那X就是1了;Y,就是装有linux系统所在的根分区。 setup (hd0)就是把GRUB写到硬盘的MBR上。

(五).用NTLoader来引导linux.

如果你在安装linux时没有选择安装grub,不必着急,现在我们来看看如何在安装linux后安装grub.并用windows的NTLoader来引导linux.

1. 安装grub

我用的grub是Redhat8.0带的grub安装包: grub-0.92-7.rpm

安装: rpm -ivh grub-0.92-7.rpm

其他安装方式也一样,只要你安装上grub就行了.RH8缺省用的grub, 1,2步骤可以省了.

2. 建立grub的环境

cp /usr/share/grub/i386-pc/* /boot/grub

3. 生成grub的配置文件/boot/grub/menu.conf

按照上面所讲的grub.conf来生成一个配置文件.

注意了, 这里我的linux在/dev/hda4,所以menu.conf那些分区位置为(hd0,3),

你的可能不一样了,不能完全照着"画瓢"噢! 下面第3步install的中的分区位置也应该和你的系统一致.

3. 安装grub至linux分区boot

将grub的stage1安装到/dev/hda4的boot扇区(hd0,3). 过程如下:

/sbin/grub (运行grub)

grub> install (hd0,3)/boot/grub/stage1 d (hd0,3) (hd0,3)/boot/grub/stage2 p (hd0,3)/boot/grub/menu.conf

(注意,上面"grub>"为grub的提示符,其后内容写在一行上.)

4. 取得grub的boot信息

过程如下:

dd if=/dev/hda4 of=/grub.lnx bs=512 count=1

这样得到grub的引导信息,只要用NT Loader来加载它就行了.

5. 将上面得到的grub.lnx弄到Windows的C盘根目录下

可以先把grub.lnx弄得软盘上,然后启动windows,拷贝到C:; 情况允许也可以直接在linux下拷贝到C:了. 我的C盘(即设备/dev/hda1)为FAT32, 可以直接从Linux下弄过去了. 如下:

mount -t vfat /dev/hda1 /mnt/c

cp /grub.lnx /mnt/c

umount /mnt/c

6. 修改NT Loader的boot.ini

在其中加入一行: C:grub.lnx="Redhat linux - GRUB"

加入后boot.ini的内容如下:

[boot loader]

timeout=15

default=C:oot.lnx

[operating systems]

multi(0)disk(0)rdisk(0)partition(1)WINDOWS="Microsoft Windows XP Professional" /fastdetect

[VGA mode]" /basevideo /sos

C:grub.lnx="Redhat linux - GRUB"

OK. 可以用NT Loader加载linux了, 其实上面过程基本上和用NT Loader加载LILO一样.其基本思想就是用NT Loader来加载LILO或grub的引导区(grub.lnx), 其中的关键就是LILO或grub的引导区的获取.

(六)活用grub的交互功能

grub具有强大的交互功能.学会了将会使你受益非浅!

1.grub没有显示菜单怎么办?

当开机后进入grub界面但没了菜单,只剩下一个grub>提示符,怎么启动呢?别急,看下面:

grub>cat (hd0,6)/boot/grub/grub.conf (为了看参数)

grub>root (hd0,6)

grub>kernel (hd0,6)/vmlinuz-2.4.18-14 ro root=LABEL=/

grub>initrd (hd0,6)/initrd-2.4.18-14.img

grub>boot

OK!启动了吧!以上有些数字要根据你的实际情况更改.

以上这个方法也可以用于测试新编译的内核.

2.进入单用户模式.

有时不小心把root用户密码忘了,只能进入单用户模式来重新设置root密码.方法如下:

开机进入grub界面,按C进入命令行模式,然后按照上面的方法进行,只是在第三步要在后面加入single参数
分页: 25/27 第一页 上页 20 21 22 23 24 25 26 27 下页 最后页 [ 显示模式: 摘要 | 列表 ]